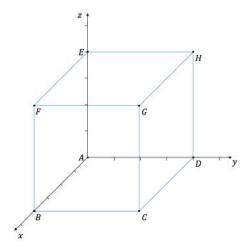
Analysieren und Kombinieren von Vektoren

Aufgabe 1 Wir benutzen wieder den Würfel mit den Eckpunkten A bis H.



- a) Finde für jeden der folgenden Vektoren, je zwei weitere Vektoren, die zu ihm kollinear sind: \overrightarrow{AB} , \overrightarrow{BE} , \overrightarrow{FH} und \overrightarrow{ED}
- b) Die Vektoren \overrightarrow{AB} und \overrightarrow{BE} spannen eine Ebene auf. Finde einen Vektor, der zu ihnen komplanar ist.
- c) Finde einen komplanaren Vektor zu \overrightarrow{CD} und \overrightarrow{FH} .
- d) Finde einen komplanaren Vektor zu \overrightarrow{AE} und \overrightarrow{FH} .
- e) Finde einen komplanaren Vektor zu \overrightarrow{ED} und \overrightarrow{BD} .

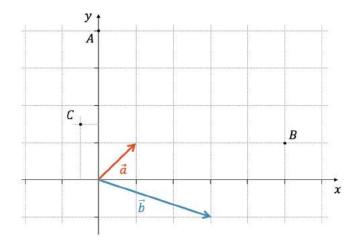
Aufgabe 2 Wir haben drei Vektoren \vec{a} , \vec{b} und \vec{c} , deren Komponenten nicht bekannt sind. Wir wissen aber, dass folgendes gilt:

$$\vec{a} = \frac{2}{3}\vec{b}, \qquad \vec{c} = \vec{a} + \vec{b}$$

Überprüfe die folgenden Aussagen auf wahr oder falsch.

- a) \vec{a} , \vec{b} und \vec{c} sind kollinear.
- b) \vec{a} , \vec{b} und \vec{c} sind komplanar.
- c) \vec{a} und \vec{b} spannen eine bestimmte Ebene auf.
- d) \vec{a} und \vec{c} spannen eine bestimmte Ebene auf.
- e) \vec{a} und der Gegenvektor von \vec{c} sind kollinear.
- f) \vec{b} und \vec{c} sind komplanar in mehr als einer Ebene.

Aufgabe 3

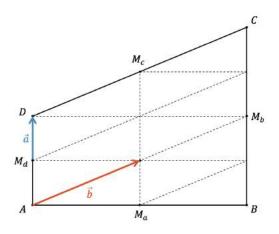


a) Lies die Komponenten der Vektoren \vec{a} und \vec{b} aus der Grafik ab und bestimme die Linearkombinationen der beiden Vektoren, die $\overrightarrow{0A}$, $\overrightarrow{0B}$ und $\overrightarrow{0C}$ ergeben. Bestimme die Linearkombinationen grafisch im Koordinatensystem.

b) Berechne die Linearkombination von \vec{a} und \vec{b} , um vom Ursprung den Punkt D(12,0) zu erreichen.

c) Berechne die Linearkombination von \vec{a} und \vec{b} , um vom Ursprung den Punkt E(900,900) zu erreichen.

Aufgabe 4 Gegeben ist das Viereck ABCD mit seinen Seitenmitten M_a bis M_d . Zusätzlich sind die beiden Vektoren \vec{a} und \vec{b} gegeben. Drücke die folgenden Vektoren als Linearkombination von \vec{a} und \vec{b} aus.



- a) $\overrightarrow{AM_b}$
- b) \overrightarrow{AB}
- c) $\overrightarrow{BM_d}$
- d) $\overrightarrow{M_b}\overrightarrow{M_c}$
- e) Welche Punkte verbindet $(\vec{b} 2\vec{a})$?

Aufgabe 5 Gegeben sind die folgenden Punkte A(3,5,1), B(2,6,8) und C(0,8,22).

a) Zeige, dass \overrightarrow{AB} und \overrightarrow{BC} kollinear sind.Berechne s, so dass

$$2\overrightarrow{AB} - 3\overrightarrow{AC} = s \cdot \begin{pmatrix} 1 \\ -1 \\ -7 \end{pmatrix}$$

b) Berechne für P(11, -11, -77) den Parameter t, so dass

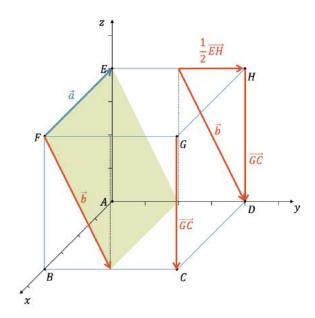
$$\overrightarrow{0P} = t \cdot \overrightarrow{AC}$$

c) Zeige, dass \vec{v} nicht kollinear ist mit \overrightarrow{AB}

$$\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Aufgabe 6 In den folgenden Aufgaben sind zwei Vektoren gegeben, die eine Ebene aufspannen. Gesucht ist das Schnittbild der Ebene mit dem Würfel. Zeichnen Sie auch die Vektoren, gemäss folgendem Beispiel:

$$\vec{a} = \overrightarrow{FE}, \qquad \vec{b} = \frac{1}{2}\overrightarrow{EH} + \overrightarrow{GC}$$



- a) Ebene in B, aufgespannt durch: $\vec{a}=\frac{1}{2}\overrightarrow{BD}$, $\vec{b}=\frac{1}{2}\overrightarrow{BE}$
- b) Ebene in A, aufgespannt durch: $\vec{a} = \overrightarrow{EG}$, $\vec{b} = \overrightarrow{HD}$
- c) Ebene in C, aufgespannt durch: $\vec{a} = \overrightarrow{CD} + \frac{1}{4}\overrightarrow{BF}$, $\vec{b} = -\frac{1}{4}\overrightarrow{GF}$
- d) Ebene in E, aufgespannt durch: $\vec{a} = \frac{1}{2} \left(\overrightarrow{DC} \frac{1}{2} \overrightarrow{BF} \right)$, $\vec{b} = \frac{1}{2} \left(\overrightarrow{EG} + \overrightarrow{GH} + \frac{1}{2} \overrightarrow{HD} \right)$
- e) Ebene in A, aufgespannt durch: $\vec{a} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$, $\vec{b} = \frac{1}{2}\overrightarrow{AH}$